Category: 蓝冠官网资讯

蓝冠注册超级电容器的优势

超级电容器又称超大容量电容器、金电容、黄金电容、储能电容、法拉电容、电化学电容器或双电层电容器(英文名称为EDLC,蓝冠注册即Electric Double Layer Capacitors),是靠极化电解液来储存电能的新型电化学装置。它具有电阻很小、寿命超长、安全可靠、储能巨大、充电快速的特点。它是近十几年随着材料科学的突破而出现的新型功率型储能元件,其批量生产不过几年时间。世界著名科技期刊美国《探索》杂志2007年1月号,将超级电容器列为2006年世界七大技术发现之一,认为超级电容器是能量储存领域的一项革命性发展,并将在某些领域取代传统蓄电池。 超级电容之所以有巨大的电容量,蓝冠网址是由于电容是以将电荷分割开来的方式储存能量的。储存电荷的面积越大,电荷被隔离的距离越小,电容量越大。超级电容是从多孔碳基电极材料得到其储存电荷面积的,这种材料的多孔结构使它每克重量的表面积可达2000平方米。而超级电容中电荷分隔的距离是由电解质中的离子大小决定的,其值小于10埃。巨大的表面积加上电荷之间非常小的距离,使得超级电容有很大的电容量。一个超级电容单位的电容值,可以从一法拉至几千法拉。 超级电容作为一种新型储能装置,具有超级储电能力。在储能机理上,它是高度可逆的,寿命很长,可以千万次反复地冲、放电,而且具有很大的电流,此外具有很宽的电压范围和工作温度范围。它兼具传统电容器的大电流快速充放电特性与电池的储能特性,填补了普通电容器与电池之间比能量与比功率的空白,其放电比功率较蓄电池高近十倍,弥补了铝电解电容和可充电电池之间的技术缺口,同时又克服了两者的缺陷,既具有电池的能量贮存特性,又具有电容器的功率特性,它比传统电解电容器的能量密度高上千倍,可达1000W/kg数量级,而漏电流小数千倍。它具有高至数千法拉甚至上万法拉的超大电容量,储电能量大、时间长;能够瞬间释放数百至数千安培电流,大电流放电甚至短路也不会对其有任何影响;可充放电10万次以上而不需要任何维护和保养,寿命长达十年以上。它可用于以极大电流瞬间放电的工作状态,而不易产生发热着火等现象;充电时间很短,可在几秒之内完成,是一种理想的大功率二次电源。它可在极低温等极端恶劣的环境中使用,并且无环境污染,具有安全可靠、适用范围宽、绿色环保、易维护等特点,是改善和解决电能动力应用的突破性元器件。

蓝冠变电站中的智能操作票

智能操作票是智能控制的保证。 目前的变电站操作票生成主要有以下两种方法:基于典型操作票的操作票生成系统。用典型操作票建立典型操作票数据库,而后将数以百计的各种操作票进行分类,以提高搜索效率。在执行操作任务时,按照任务的要求从典型操作票数据库搜索出所需的典型操作票,蓝冠在此基础上根据当时具体情况进行修改,得到实际需要的操作票。基于图形校核的操作票自动生成系统。具有可视化的图形界面,便于人机交互,用户通过在接线图上点击鼠标或键盘就可以完成一次开票过程。每次点击一次接线图上的电气元件就生成一次操作步骤,如果操作过程违反了操作安全规程,则系统会自动报出,提示操作员操作时的错误。目前这种基于图形校核的操作票自动生成系统由于其功能强大,蓝冠平台官网操作直观,实际应用最为广泛。但是,它不能自动推理出操作票,不具备智能性。 本工程采用操作票专家系统,通过获取电力系统专家丰富的运行经验和知识来模拟电力系统专家智能开票系统。操作票专家系统主要利用存放电力系统设备相关的操作规则和经验知识的知识库,根据操作任务的要求,调用相关设备的规则类进行匹配推理,生成最终的操作票。

蓝冠网址智能电网发展现状之中国篇(1)

目前我国与欧美国家在智能电网建设方面处于同一起跑线上,国内众多行业中的领先企业和科研机构都很关注智能电网的发展。 国家电网公司提出了建设以信息化、数字化、自动化、互动化为特征的,自主创新、国际领先的坚强智能电网的发展目标。 南方电网公司近期也在积极研究智能电网发展问题。2009年2月,华北电网公司智能化电网建设成果——华北电网稳态、动态、暂态三位一体安全防御及全过程发电控制系统在京通过专家组的验收。 1我国发展侧重:输变电、配电至用户侧 与美国相比,蓝冠网址我国的电力环境有很大的不同,我国能源与用电负荷分布的情况以及网售合并的垄断性电力市场决定了我国应侧重长距离输变电的发展,即在时点和力度上都优先发展输电网络,用户侧智能化短期内只需采集用户用电信息。 2能源分布集中使得我国分布式发电较少 我国的电力资源分布相对集中,从煤炭资源的分布区域看,华北地区最多,占全国保有储量的49.25%,其次为西北地区,占全国的30.39%;水电主要集中在南部,中、西南两地占有我国水电资源的近80%;我国可开发的风电资源主要集中在东北,蓝冠客服西北两地;能源的集中使得我国必然进行集中式的大规模发电,全力发展大火电,大水电,大风电。 3用电负荷相对集中于东南沿海地区。 仅长三角、珠三角、环渤海三地区用电量占全国总用电量的43%。用电负荷与西北,西南清洁能源集中地区距离较长的特点使得我国应重点发展长距离、高容量、低损耗的输电骨干网络。 4网售合并的垄断性电力市场降低了对用户侧智能的要求。 我国的电力市场还未完全开放,发电企业的上网电价由发改委制定,国家电网与南方电网两公司垄断电力输配售3 个环节,电力市场各环节均处于高度垄断。因此,短时间内无法实现电价自由定价,用户不必选择供电商。用户侧智能的要求低于欧美国家,短期内应以电网公司对用电信息的采集监控为主,用户则较少自主参与电力市场。 5环境差异决定我国应重点发展长距离输电 5.1大规模投资确保我国 2020 年建成智能电网 国家电网公司定位建设目标——坚强智能电网。国家电网公司表示将全面建设以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,以信息化、数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网。可以看出国网将特高压与电网的坚强性放在一个较高的位置,优先发展输变电成为必然趋势。

蓝冠平台官网智能电网的智能自动电压控制技术(1)

1 智能电网 近几年在世界范围内兴起的智能电网, 是指用先进的通信、信息、网络、传感器、分布式电源、分布式计算技术等一切可以为我们所应用的先进技术和传统的电网技术相结合,使电网具有一种思维、分析、判断、决策、控制的功能,无论在什么情形下,电网都能自动快速准确的进行自控,因而电网就能更安全、稳定、高质、高效,更人性化的运行, 能够自如的应对 21 世纪来自各方面的挑战,这就是智能电网,也称为绿色电网,可持续发展的电网,蓝冠平台官网社会各方面都能受益的电网。智能电网应该涵盖电网的发、输、变、配、用电各个环节,涵盖各级电压的电网。 2 智能自动电压控制 电网有三大控制系统,安全稳定控制系统、自动发电控制系统( Automatic Generation Control-AGC ) 和 自动电压控制系统(Automatic Voltage Control -AVC)。因此按照智能电网的标准建设的 AVC,是智能 AVC (SmartAVC),是智能电网的重要内容之一。SmartAVC 把我国独有的经济压差(△UJ)无功潮流计算技术与先进无功动态补偿装置相结合组成 SmartASVC。ASVC 是无功就地平衡补偿、电压波形对称补偿与谐波补偿一体化装置。Smart AVC 是使电网无功电压控制的全过程达到智能化的过程。 2.1 Smart AVC 的目标 (1)实现电网安全稳定运行,降低电压崩溃事故大规模停电风险; (2)提高电能的电压质量,蓝冠注册全网全方位电压合格率统计达到 95%以上; (3)提高输电效率,最大限度的降低线路损失,全网线损率达到5.5%,年节约线损电量 700 亿 kWh; (4)提高用户的用电的效率、可靠性; (5)提高供电设备利用率…

蓝冠电动汽车入网技术在智能电网中的应用(1)

按照国家新能源汽车产业发展规划,2010~2015年是电动汽车产业化和大规模推广应用的关键5年。相关研究表明,蓝冠2016年是电动汽车产业化发展的拐点,电动汽车发展进入高速成长期,预计到2020年,上海市电动汽车市场规模预计可达约35万辆(按市场渗透率15%计算) 。大量的车辆充电将带来新一轮的负荷快速增长,以每辆车配置12 kW·h电池计算,这些电动汽车日充电所用电量约为336万kW·h (按0. 8同时率计算) ,这对用电负荷峰谷差日益加大的电力系统而言,增加了巨大的发、输、配电压力。 智能电网的核心价值是提高能效,蓝冠平台官网利用各种高科技手段提升发、输、配、用电各环节的运行管理水平,节约资源,保护环境;智能电网更加适应多种能量单元发电、配电、用电方式的需要,更加适应市场化的电力交易的需要,更加适应客户的自主选择需要。 电动汽车入网(Vehicle to Grid,简称V2G)技术就是电动车辆的能量在受控状态下实现与电网之间的双向互动和交换,是“智能电网技术”的重要组成部分,应用V2G和智能电网技术,电动汽车电池的充放电被统一部署,根据既定的充放电策略,在满足电动汽车用户行驶需求的前提下,将剩余电能双向可控回馈到电网。 1 .V2G系统信息流程 V2G体现的是能量双向、实时、可控、在车辆和电网之间流动,充放电控制装置既有与电网的交互,又有与车辆的交互,交互的内容包括能量转换信息、客户需求信息、电网状态、车辆信息、计量计费信息等。因此,V2G是电力电子、通信、调度和计量、需求侧管理等众多技术的高端综合应用,图1所示为V2G系统信息图。 SM:智能电表,双向计量、本地信息存储,以RS485与EV2PCS通信,通过EV2PCS向UT传送电量信息; EV2PCS:双向智能充放电装置,由低压控制器和本地管理机组成,用于实现车辆和电网之间的双向能量交互,是V2G系统的关键装置; UT:人机交互终端,是电动汽车用户与电网交流的界面,用户从中获取用电量和电费信息; BMS:电池管理系统,用于车辆电池数据的采集与传输,电池运行状态的监控,以CAN总线与EV2PCS通信,通过EV2PCS向后台传输车辆信息; EMS:后台管理系统,对上与电网调度系统通讯,获取电网负荷信息并执行电网调度指令,对下与EV2PCS通信,获取车辆状态信息,分配并下发电网调度指令。 2.V2G系统各部件 1双向智能充放电装置 双向智能控制装置作为V2G技术中的关键功率部件,用于实现电网与电动汽车间的能量双向流动,可工作在充电模式和V2G模式:如果选择充电工作模式,即只是对车辆进行充电操作,不将车辆电池能量回馈至电网;如果选择V2G工作模式,装置根据用户在人机交互终端上选择的车辆SOC上下限门限值,或装置默认的SOC上下限门限值,将连接车辆可充放电的实时容量、受控时间等信息提供给后台管理系统,后台管理系统下发充放电控制指令,装置根据车辆电池当前SOC进行充、放电操作,实现能量的双向流动。图2所示为双向智能控制装置主回路拓扑。 其拓扑特点如下: (1) 采用三相全桥双向PWM变换,能对电池进行充放电; (2) 电网交流与电动汽车电池侧采用隔离变压器进行电气隔离; (3) 同时隔离变压器可进行交直流之间的电压匹配; (4) 交流侧和直流侧配置过载过流断路器; (5) 交流直流侧均配置有预充电回路,启动方式灵活; (6) 采用一级变换器,拓扑简单,可靠性高。

蓝冠网址智能电网中的超级电容技术

什么是超级电容 超级电容器(super capacitor),又叫双电层电容器(Electrical Double—Layer Capacitor)、黄金电容、法拉电容。是介于传统电容器和充电电池之间的一种新型储能元件。其容量可达几百至上万法。功率是电池的l0倍以上,储存能力比普通电容器高,蓝冠网址具有工作温度范围广、可快速充放电、循环寿命长、无污染、零排放等特点。 超级电容器储能系统的基本结构如图1所示。超级电容器多为双电层结构,其活性炭电极和电解质之间是空间分布式结构,可用多个电容器的串并联描述超级电容器的特性。 在超级电容器组充放电过程中,蓝冠客服端电压范围变化大,通常必须采用DC/DC变换器作为接口电路来调节超级电容器的储能和释能。DC/AC变换器可采用双向DC/AC逆变器,或者采用AC/DC整流器及DC/AC逆变器。超级电容器储能系统并联在微电网中母线或者馈线上。 超级电容器储能系统利用多组超级电容器将能量以电场能的形式储存起来,当能量紧急缺乏或需要时。再将存储的能量通过控制单元释放出来,准确快速补偿系统所需的有功和无功,从而实现电能的平衡与稳定控制。超级电容器本身的优点使得它在应用于分布式发电时,在与其它储能方式的互相竞争中胜出。 超级电容器分类介绍 一般认为超级电容器包括双电层电容器和电化学电容器两大类。 (1)双电层电容器 双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。 双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。双电层电容器的容量大小与电极材料的孔隙率有关。通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。但不是孔隙率越高,电容器的容量越大。保持电极材料孔径大小在2-50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高电容。 (2)赝电容器原理 赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10-6 F/cm2。对氧化还原型电容器而言,可实现的最大容量值则非常大,而碳材料的比容通常被认为是20×10-6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10-100 倍。 目前赝电容电极材料主要为一些金属氧化物和导电聚合物。金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物,如:MnO2、V2O5、RuO2、IrO2、NiO、WO3、PbO2和Co3O4等金属氧化物作为超级电容器电极材料,研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700-760 F/g。但RuO2稀有的资源及高昂的价格限制了它的应用。研究人员希望能从MnO2及NiO等金属氧化物中找到电化学性能优越的电极材料以代替RuO2。 用导电聚合物作为超级电容器的电极材料是近年来发展起来的。聚合物产品具有良好的电子电导率,其典型的数值为1-100 S/cm。一般将共轭聚合物的电导性与掺杂半导体进行比较,采用术语“p掺杂”和“n掺杂”分别用于描述电化学氧化和还原的结果。导电聚合物借助于电化学氧化和还原反应在电子共轭聚合物链上引入正电荷和负电荷中心,正、负电荷中心的充电程度取决于电极电势[9]。导电聚合物也是通过法拉第过程大量存储能量。目前仅有有限的导电聚合物可以在较高的还原电位下稳定地进行电化学n型掺杂,如聚乙炔、聚吡咯、聚苯胺、聚噻吩等。现阶段的研究工作主要集中在寻找具有优良的掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。 超级电容器的组成方式 常见的超级电容器有三种组成方式:串联方式、并联方式和串并混联方式。串联方式的超级电容器组件:由于超级电容器的单体工作电压不高,不能覆盖应用工况的电压需求范围,需要将多个单体串联来满足应用工况的电压要求,但因单体电容器之间的固有差异,作用在串联组件上的总电压并不能均衡地分配给不同的电容器,它会导致电压分配的不对称。 并联方式的超级电容:以并联方式建构的超级电容器组件可以输出或接受很大的电流。在充电过程中,由串联充电电阻保证单体之间的电压分布,但超级电容器本身固有的充电电阻是一个动态的量,具有一定的分散性,使得调整电阻变化的控制电路极其复杂,难以实现逐点控制;在放电过程中,控制放电电阻,可获得很高的输出功率,但为了避免放电电流过大,保证许可的输出功率,要适当控制组件的贮能量。 串并混联的超级电容器组件:结合串联和并联方式的优点,避免两种方式各自不足。每个电容器均指定一电阻控制其充电过程的电压。故在本文所述的起重机新 型混合动力系统中,所用超级电容的组合方式采用串联和并联混合的连接组成方式。 超级电容器在微电网中的应用 微电网由微电源、负荷、储能以及能量管理器等组成。储能在微电网中发生作用的形式有:接在微电源的直流母线上、包含重要负荷的馈线上或者微电网的交流母线上。其中,前两种可称为分布式储能,最后一种叫做中央储能。 当并网运行时,微电网内的功率波动由大电网进行平衡,此时储能处于充电备用状态。当微电网由并网运行切换到孤网运行时,中央储能立即启动,弥补功率缺额。微电网孤网运行时负荷的波动或者微电源的波动则可以由中央储能或者分布式储能平衡。其中,微电源的功率波动有两种平衡方式,将分布式储能和需要储能的微电源并联接在某馈线上,或者将储能直接接入该微电源的直流母线上。 智能电网技术专题 1.提供短时供电 微电网存在两种典型的运行模式:正常情况下,微电网与常规配电网并网运行,称为并网运行模式;当检测到电网故障或电能质量不满足要求时,微电网将及时与电网断开从而独立运行,称为孤网运行模式。微电网往往需要从常规配电网中吸收部分有功功率,因而微电网在从并网模式向孤网模式转换时,会有功率缺额,安装储能设备有助于两种模式的平稳过渡。 2.用作能量缓冲装置 由于微电网规模较小,系统惯性不大,网络及负荷经常发生波动就显得十分严重,对整个微电网的稳定运行造成影响。我们总是期望微电网中高效发电机(如燃料电池)始终工作在它的额定容量下。但是微电网的负荷量并非整日保持不变,相反,它会随着天气变化等情况发生波动。为了满足峰值负荷供电,必须使用燃油、燃气的调峰电厂进行高峰负荷调整,由于燃料价格很高,这种方式的运行费用太昂贵。超级电容器储能系统可以有效地解决这个问题,它可以在负荷低落时储存电源的多余电能,而在负荷高峰时回馈给微电网以调整功率需求。超级电容器功率密度大、能量密度高的特性使它成为处理尖峰负荷的最佳选择,而且采用超级电容器只需存储与尖峰负荷相当的能量。 3.改善微电网的电能质量 储能系统对微电网电能质量的提高起到了十分重要的作用。通过逆变器控制单元,可以调节超级电容器储能系统向用户及网络提供的无功及有功,从而达到提高电能质量的目的。由于超级电容器可快速吸收、释放大功率电能,非常适宜将其应用到微电网的电能质量调节装置中,用来解决系统中的一些暂态问题,如针对系统故障引发的瞬时停电、电压骤升、电压骤降等问题,此时利用超级电容器提供快速功率缓冲,吸收或补充电能,提供有功功率支撑进行有功或无功补偿,以稳定、平滑电网电压的波动。…

蓝冠注册微电网技术

能源是现代社会和经济发展的动力,是人类生命存在和繁衍的生命线。传统 化石能源的逐步耗竭,使能源危机已逐步逼近。中国 21 世纪的能源工业将是能 源资源利用与环境保护可持续发展的改造型新工业,因此,合理调整能源结构,蓝冠注册 大力开发可再生能源和其它新能源,走多元化洁净能源发展道路,是我国社会可 持续发展的必由之路。 微电网是一种新型的网络结构,是一组微电源、负荷、储能系统和控制装置 构成的系统单元。微电网中的电源多为容量较小的分布式电源,即含有电力电子 接口的小型机组,包括微型燃气轮机、燃料电池、光伏电池、小型风力发电机组 以及超级电容、飞轮及蓄电池等储能装置,它们接在用户侧,具有成本低、电压 低及污染低等特点。 开发和延伸微电网能够促进分布式电源与可再生能源的大规 模接入,实现对负荷多种能源形式的高可靠供给,蓝冠网址是实现主动式配电网的一种有 效的方式,使传统电网向智能电网过渡。 微电网的含义与研究动态 目前世界上许多国家己开展微电网研究,立足于本国电力系统的实际问题提出了各自的微电网概念和发展目标。作为一个新的技术领域,微电网在各国的发展呈现不同的特色。 1.1 美国微电网的研究 ERTS(Consortium for Electric Reliability Technology Solutions)合作组织由美国的电力集团、伯克利劳伦斯国家实验室等研究机构组成的,在美国能源部和 加州能源委员会等资助下,对微电网技术开展了专门的研究。CERTS 定义的微 电网基本概念:这是一种负荷和微电源的集合。该微电源在一个系统中同时提供 电力和热力的方式运行,这些微电源中的大多数必须是电力电子型的,并提供所 要求的灵活性,以确保能以一个集成系统运行,其控制的灵活性使微电网能作为 大电力系统的一个受控单元,以适应当地负荷对可靠性和安全性的要求。 CERTS 定义的微电网提出了一种与以前完全不同的分布式电源接入系统的 新方法。传统的方法在考虑分布式电源接入系统时,着重在分布式电源对网络性能的影响。按传统方法当电网出现问题时,要确保联网的分布式电源自动停运, 以免对电网产生不利的影响。而CERTS 定义的微电网要设计成当主电网发生故 障时微电网与主电网无缝解列或成孤岛运行, 一旦故障去除后便可与主电网重新 连接。这种微电网的优点是它在与之相连的配电系统中被视为一个自控型实体, 保证重要用户电力供应的不间断,提高供电的可靠性,减少馈线损耗,对当地电…

蓝冠数字化变电站技术在杨丁变的应用总结

1、前言 目前变电站综合自动化系统在国内已经广泛应用,微机型继电保护和测控设备普及应用,监控技术水平逐年上升。但是仍然存在一些不足,如:二次设备之间互操作性不够、长期维护和运行困难、信息难以共享,重复投资、二次电缆用量多,蓝冠造价高、运维困难;模拟信号传输存在干扰及附加误差,变电站运行安全性、可靠性降低、难以实现状态检修等;同时为了推进广西数字化变电站技术的推广,将110kV杨丁变电站作为数字化变电站建设是必要的。 由于近代通讯技术和网络技术的发展,蓝冠平台官网电子式一次设备,光电式传感技术的应用,使实现整个变电站的数字化成为可能。为了实现数字化变电站所要完成的控制、监视和保护功能,110kV杨丁变电站采用三层结构,即变电站层、间隔层和过程层。 监控系统由站级层和间隔层、过程层三部分组成,网络按单网考虑,全网络实现IEC61850通信规约,对全站所有信息按照IEC61850规约建模,实现全站信息共享,过程层到间隔层采用点对点结构,间隔层与站控层组建环网。 过程层主要完成模拟量采样、开关量采集和控制命令的出口等与一次设备相关的功能,过程层设备包括合并单元、智能终端,合并单元与互感器连接,智能终端与开关设备及其他需要采集开关量的设备连接。 间隔层的功能在于完成各个间隔的测量、控制和保护功能。本站中,110kV线路、内桥间隔和主变本体、主变10kV侧配置了智能终端,智能终端完成了站内的测控功能,故110kV和主变部分不配置专门的测控设备,仅由保护设备进行测控信息的转发;10kV测控与保护合二为一,置于10kV开关柜,10kV部分不设置过程层,按照常规综自站的模式,测控保护装置与一次设备用电缆进行连接,间隔层按照IEC61850规约通信。 站级层的功能在于监控全站,向调度上传站内信息,接收来自调度的命令,通过间隔层和过程层对站内设备进行控制。站控层采用以太网方式组网,包括:当地监控主机/操作员工作站一套、继保工作站一套、远动装置两套、微机五防工作站一套和打印机等。 本站不再设传统模式下的备自投装置。110kV进线备自投、跨间隔的操作、电容器与有载调压主变压器综合投切等需要的联闭锁要求,均由IEC61850 GOOSE功能实现。所用变备自投由低压侧智能开关实现。 其它智能设备通过符合IEC61850规约的通信接口接入计算机监控系统,不具备IEC61850通信接口的设备通过规约转换器转换成IEC61850之后接入监控系统。 2、杨丁变电站数字化应用的优点 2.1变电站保护设备运行更稳定 (1)数字化变电站中,智能化一次设备的数字化传感器、数字化控制回路代替了原常规继电保护装置、测控等装置的I/O部分,光缆代替电缆避免了集电器等逻辑部件老化、失灵带来的误动作,克服了设备在运行过程中的发热、氧化、切换不可靠等问题。 (2)传统电压、电流互感器内部绝缘机构复杂,易饱和,准确性受二次负载影响、容易受电磁干扰,以及漏气、漏油,甚至存在爆炸等问题。变电站数字化后采用光电式互感器,采用法拉第磁光效应(无源型)或者罗斯夫斯基线圈(有源型)从磁场中获得有关信息,能实现大电流比、无磁饱和、频率响应范围宽,精度高,暂态性能好等优点。 (3)数字变电站采用了智能终端,将部分保护设备放置在开关端子箱中就地保护,极大减少了电磁干扰。 2.2变电站保护设备运行维护更安全方便 (1)数字化变电站能有效避免二次侧的电压回路短路、电流回路开路的恶性事故的发生。 (2)电脑程序代替了传统的保护调试方式,更为快捷、准确。 2.3辅助材料大大减少,建设成本大大降低。 数字化变电站中有色金属、橡胶等材料耗用量大大减少。在今后的运行过程中可改进优化电站配置方式,电站监控设备可集成为占地面积非常小的装置,节约了土地资源。 3、数字化变电站规划与建设当中存在的问题 3.1研发过程中专业协作仍有待加强,比如智能化电器的研究至少存在机、电、光三个专业协同攻关,单一专业取得全面突破仍有相当大的困难。 3.2材料器件方面的缺陷及性能改进,比如电子式互感器的材料。 3.3试验设备、测试方法、检验标准,特别是EMC(电磁干扰与兼容)控制与试验还是薄弱环节。 4、数字化变电站应用前景展望 数字化变电站的应用前景数字化变电站是以IEC61850为通信标准的信息采集、传输、处理、输出过程完全数字化的变电站,其特征为设备智能化、建模标准化、通信网络化、运行管理自动化。基于IEC61850标准实现的数字化变电站具有设计高效、技术长期先进、标准相对稳定和系统易于维护的优点。目前,国内数字化变电站系统的应用和实施尚处于探索、起步阶段,尤其是过程层和间隔层IED之间数字通信方案还停留在开发研究的初期。对推广和应用而言,光互感器还需攻克一些技术难题。国内满足要求、能推广应用的智能型一次设备太少。就交换机和嵌入式智能装置而言,在过程层应用1000Mbit/s网的技术不成熟。 数字化变电站系统方案应分期进行。首先,在相对成熟的变电站层和间隔层,推广IEC61850标准实施,实现不同厂家设备之间的互联和互操作。其次,重点攻克的间隔层与过程层之间部分实现数字化,积累来自现场的实际经验,验证和完善数字化变电站的工程方案。最后,制定可以推广、具有代表性的数字化变电站系统解决方案。数字化变电站自动化系统是全新的、网络化、智能化、分布式的保护与控制系统,它除能够完成现有现有常规监控系统的监控、保护等功能外,还能够对数据信息分层、分流交换自动化,真正能实现数据信息资源共享,和上、下系统进行互联。

蓝冠网址LPAR技术在省级电网企业协同办公系统中的应用

一. 概述 随着科学技术的迅猛发展,虚拟化技术日益成为关注的焦点,正在最大程度地改变企业IT基础设施的部署及运营。而甘肃省级电网企业协同办公系统即是打破原有本部、各地市公司两级部署模式,采用大集中部署的电力业务应用系统。即在甘肃省电力公司本部实现所有系统的集中部署,各地市公司通过访问部署在本部的系统完成日常办公业务。 由于采用大集中部署服务器的技术架构,蓝冠网址考虑到机房实际容量及节省硬件采购成本,将其中两台IBM p6 570小型机采用逻辑分区(LPAR)技术,就是将单台服务器划分成多个逻辑服务器,彼此运行独立的应用程序。 逻辑分区不同于物理分区(Physical Partitioning PPAR),物理分区是将物理的将资源组合形成分区,而逻辑分区则不需要考虑物理资源的界限。相对而言,逻辑分区具有更多的灵活性,可以在物理资源中自由的选择部件,这需要有比较好的保证,即最大化的使用系统资源,但又最小化不必要的资源再分配。在逻辑分区的环境下,如CPU、内存和I/O都可以独立的分配给每个分区。 二. 技术特点 一个逻辑分区包含处理器、蓝冠客服内存和I/O插槽,在一个系统中这些都是一个可用资源的子集,如图3-1所示。当有这些配置规则,资源的单位颗粒度能够非常弹性的被分配给分区。它有可能只添加很少的需要的内存,而不依靠内存控制器的大小或者不需要必须添加那些不需要的更多处理器或I/O插槽。不同于物理分区的方面是资源被分组形成一个分区。 2.1 Hypervisor模式 逻辑分区(LPAR)技术并不是系统上某一单独部件能完成的,它依赖于软件、硬件和firmware的协同工作才能实现。 首先,CPU能支持更多的系统调用(称作系统管理程序Hypervisor模式)。另外要求CPU实模式访问内存地址时具有寻址偏移量的能力。同样,I/O bridge也必须支持I/O卡的DMA地址到内存地址的偏移量,因为这些地址也是由Hypervisor映射的。 如图,Hypervisor的功能示意图。 2.1.1实模式地址寻址 每个操作系统的映象需要用实地址寻址的方式访问内存,不用虚地址的翻译,并且起始地址从零开始,通常先是内核代码、固定的内核结构、和中断矢量。由于在分区模式下,多个操作系统不能共享同样的物理零地址,所以每个分区必须有自己的实地址段。 当每个分区被启动后,固件赋予分区唯一的实地址起始偏移量和范围值,并且将偏移量和范围值存入到分区内每个CPU的寄存器内。这些值映射出赋给此分区的物理地址。当分区程序以实地址方式访问指令和数据时,硬件自动将每个地址增加实地址偏移量。在这种模式下,逻辑分区程序似乎还保持从零地址寻址,虽然实际处理时,此虚地址被自动映射成另外的物理地址。硬件逻辑电路阻止运行在此分区内的操作系统修改这些寄存器的值。任何企图访问实地址超出所分配的地址范围时,会引起地址异常中断。 2.1.2 虚模式地址寻址 当程序在虚地址方式下访问指令和数据时,它并不关心地址是否被虚拟内存管理(VMM)使用页面转换表进行了转换。页面转换表存放在系统内存中,每个分区都有自己唯一的页面转换表。处理器使用这些表透明地将程序的虚地址转换成物理地址。 在逻辑分区模式下,页面转换表被存放在一个特殊的内存区域,只能被hypervisor所访问。换句话说,页面转换表并不在此分区所属的实地址范围内。保存页面转换表地址的寄存器也被硬件逻辑所保护,不能被分区程序所修改,只能被hypervisor管理程序所修改。 当操作系统需要产生一个页面转化映射时,分区内处理器必须执行一个hypervisor服务调用指令。由hypervisor程序代表分区产生页面表入口,并为此页增加从逻辑地址到物理地址的偏移量。分区程序可以调用hypervisor修改或删除存在的页表项。 2.1.3 LPAR和操作系统的关系 在逻辑分区环境下操作系统的特殊处理,主要的不同是虚拟内存管理功能,只有分配给分区的设备才能被操作系统所访问,操作系统不能访问到分区外的任何资源。一些可选的hypervisor服务,用来处理Debug信息,以及每个分区的虚拟TTY 处理。 在pSeries硬件平台上,提供了一系列的结构化固件在线提取服务(RTAS)调用,在LPAR模式下,这些调用执行附加的有效性检查和资源虚有化处理。例如,尽管只有一个物理的闪存和物理时钟芯片,RTAS可让每个分区都感觉有自己的闪存和不同的时钟。 2.2 Firmware和AIX之间的关系 除了Hypervisor之外,当系统重置后运行在Open Firmware一层(称作Global)能够访问系统中所有的设备和数据。当系统划分逻辑分区后,存在另一个Open Firmware,它运行在Global上面。每一个分区有自己的分区固件,它可以访问属于自己分区内的所有设备,但是不能访问其它分区内的设备。 如图2所示,Firmware和AIX之间的关系。 2.3 健壮的LPAR的管理 hypervisor服务程序强迫分区的边界和维护分区内资源的一致性。分区的管理也体现了安全性特点,分区的管理是通过IBM…

蓝冠平台官网电力电子技术在电动车驱动系统中的应用

电动汽车是二十一世纪的绿色交通工具,是当前国际上正在进行研究的一项高新技术。它继承电动机、电力电子、微电子与新材料、各种不同的电气驱动系统,还包括光、电、化各学科领域的最新技术于一体,是车辆、电力拖动、电力电子、智能控制、化学电源、计算机、新能源、新材料等工程技术的集成产物。它以电力为动力解除了人们对石油资源日渐枯竭的担心。作为清洁、节能的新型交通工具电动车可以做到“零排放”,它在行驶过程中没有污染,蓝冠平台官网热辐射低,噪音小,不消耗汽油,可应用多种能源,结构简单,使用维修方便,因此受到广泛的欢迎。高效率、高性能电机驱动技术是其关键技术之一,就各种不同的电机驱动,作概略的回顾和展望。 电动车比燃油汽车早出现近半个世纪,它的发展却远远滞后于燃油汽车。进入20 世纪60 年代,汽车工业的飞速发展给人类提供了便利,但同时也加剧了全球环境的污染,使石油资源大量消耗,带来了温室效应,这使得电动车又得到了重视。电动车不仅可以有效地利用能源,而且改善了交通安全和道路状况,成为一种提高空气质量,减少对汽油依赖的理想的替代交通工具。8 0 年代以来,电动车的研制热潮在全世界范围内兴起,其中在北美、日本和欧洲等地,水平较高,发展较快,正在逐步由样车试制向小批量商业化生产的方向发展。如通用汽车公司的冲击4型,NISSAN 公司的FEV,宝马公司的E1/E2,香港大学研制的U2001 等。 1 电力电子技术发展概述及常用器件简介 电力电子器件是电力电子技术的基础,也是电力电子技术发展的“龙头”。从1958 年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,蓝冠注册电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了7 0 年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了G T R、G T O、电力MOSFET 等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化以及电力集成的方向发展,如IGBT、MCT、HVIC 等就是这种发展的产物。 1.1 全控型电力电子器件 (1)门极可关断晶闸管(GTO) 1964 年,美国第一次试制成功了500V/10A 的GTO。在此后的近1 0 年内,G T O 的容量一直停留在较小水平,只在汽车点火装置和电视机行扫描电路中进行试用。自7 0 年代中期开始,G T O 的研制取得突破,相继出世了1 3 0 0…